SlideShare a Scribd company logo
1 of 97
Download to read offline
Terrestrial Laser Scanning in
River Environments
Dr David Hetherington
Ove Arup and Partners, Newcastle upon Tyne, UK.




Tuesday the 1st June 2010
Universidad Javeriana, Bogota, Colombia                         Laser Scanner




                                                              Laser Scanner




Photograph – River Wharfe   Laser Scan Model – River Wharfe
Presentation Structure
• Spatial Data Theory
• Terrestrial Laser Scanning principles and
  operation
    • Reflectivity, Time-of-flight measurement, Scanner operation

• Potential uses and example projects
    • Example projects, Potential applications, where next?

• Benefits and Limitations
    • Fit-for-purpose?

• Questions
What is good quality spatial data?...
Processing spatial data into elevation models
 • Manual filtering – to remove anomalies
 • Ground filtering – to remove lowest or highest
   points
 • Regularisation / gridding – to allow for surfacing
 • Averaging – between surveys
 • Lumping – all data together
 • Extrapolation – estimating beyond surveys
 • Interpolation – predicting lines and data between
   points
 • ALL OF THESE IMPACT ON DATA QUALITY
Interpolation – various methods




(From Keckler 2001)
Survey Methods: Thedolite/GPS
                      Aerial Photo




2 people x 3 days =
4000 data points
Survey inaccuracy: Form
     Interpolation
Survey method and interpolation error




  Potential volumetric estimation error for various survey techniques,
  and interpolation methods in a river system (from Milan et al,
  2007)
Example complex (yet high quality)
input spatial data – Terrestrial lidar
Terrestrial Laser Scanning (TLS) - types
 • Various types exist
   • Ultra-short range (hand held static) used in manufacturing,
     medicine, archaeology
   • Short range (mobile static) used in heritage, archaeology, small
     buildings
   • Medium range (mobile static) used in buildings, street scenes,
     infrastructure.
   • Long Range (mobile static) used for large buildings,
     townscapes, topographical surveys, mining, forestry.
   • Vehicle Based (mobile dynamic) automated survey and data
     registration. Used to easily map towns, long roads, motorways
     etc.
   • All have their relative benefits and weaknesses.
   • Choosing the correct method is key
Measurement using Laser Scanning –
Basic Principles
• Lidar:
  • “Light Detection And Ranging” using a pulsed laser beam.

• Numerous automated measurements = Scanning
• 3 platforms for lidar scanning
  • Satellites (extremely long range)
  • Airborne (long to moderate range)
  • Terrestrial (very short to moderate range)

• All based on time-of-flight principles of laser pulses
• All are reflectorless and non-contact.
• Measurements are based on reflections from physical
  surfaces
Laser measurement theory - REFLECTIVITY
   • 3 types of light reflection:




    Diffuse             Mirror-like                Retro
(most surfaces)        (Glass, mirrors flat   (roadsigns, bike
                       water surfaces)        reflectors, strips on
                                              high-vis jackets)
Time-of-flight measurement




• A laser pulse generator sends out infrared light pulses.
• Reflected echo signals generate a receiver signal.
• Time interval counted by a quartz-stabilised clock frequency.
• The calculated range value is then processed and saved.
A simplified lidar scanner

           1. Range finder electronics
           2. Laser beam
           3. Rotating mirror
           4. Rotating optical head
           5. Connection to Laptop
           6. Laptop
           7. Software
Terrestrial laser scan data
• Range of up to 1500m (for highly reflective surfaces)
• Sub-cm accuracy
• A single scan can contain over 7-million data points
• A single model is made of multiple scans from various
  locations to avoid data shadow
• Each coordinate point is associated with colour (as
  measured by an integrated camera) and intensity
  (reflectivity) information.
• Data and scans are automatically georeferenced using
  an integrated GPS system.
• Can be easily linked to thermal imagery cameras.
Riegl LMSZ420 laser scanner

 • Arup own this model of medium-long range
   scanner.
 • Time of Flight-based scanner
 • Range of around 1km
 • Point accuracy of around 10mm (can be reduced to
   around 5mm with repeat scanning)
 • Allowing for very high resolution point clouds.
 • Integrated camera captures colour data
 • Captures intensity of return data and attached to
   each coordinate (along with colour).
Riegl LMSZ420 laser scanner
Spatial & Temporal Change
                           1000km
                                       Rates
                                                                                                  River scale
                                                                                                  slope adjustment

                                                                                 Reach scale
Increasing Spatial Scale




                                                                                 slope adjustment
                             1km                                       Planform change



                                                    Barform change

                              1m                    Cross-section
                                                    adjustment


                                    Fine sediment
                                    movement


                             1mm
                                     1 day             1 month         1 year        1000 years        10000 years

                                                             Increasing Time Scale
Spatial & Temporal Survey
                           1000km      Limits
                                                                                   Aerial Photo's

                                                               Airborne
Increasing Spatial Scale




                                                               LIDAR
                                        GPS
                             1km




                                             Theodolite


                              1m




                                            Photogrametry
                             1mm
                                    1 day            1 month              1 year       1000 years   10000 years

                                                            Increasing Time Scale
Spatial & Temporal Survey
                           1000km      Limits
                                                                                   Aerial Photo's

                                                               Airborne
Increasing Spatial Scale




                                                               LIDAR
                                        GPS
                             1km




                                             Theodolite


                              1m




                                            Photogrametry      NO DATA
                             1mm
                                    1 day            1 month              1 year       1000 years   10000 years

                                                            Increasing Time Scale
1000km
                                                  Lidar limits
                                                                                   Aerial Photo's

                                                               Airborne
Increasing Spatial Scale




                                                               LIDAR
                                        GPS
                             1km




                                             Theodolite

                              1m




                                                                                   Terrestrial LIDAR
                                            Photogrametry      NO DATA
                             1mm
                                    1 day            1 month              1 year       1000 years   10000 years

                                            Increasing Time Scale
Multiple scans and overlap




                             Multiple scans
                             from various
                             perspectives
                             reduce “shadow”
Point Cloud Model Creation (merging scans)

 • All individual scan need to be registered into one
   common coordinate system.
 • Various ways to do this..
 • Quickest and most reliable way is via “pattern
   matching” / “surface matching”.
 • I-Site software is a good option.
 • Allows for surfaces to be created, cross sections to
   be cut, volumes calculated, change/deformation to
   be observed.
 • Output possible in numebrous formats including
   CAD.
Example laser scan model – River Wharfe

                      • 25 High-Resolution Scans
                      • Scans Merged to within <5mm
                      • 21 million Data points
                      • 1 point per cm2
Error Measurement On The Wharfe
                     x                y              z
Mean                 -0.0176          0.00011        0.001078
Standard Error       0.002014         0.004054       0.001856
Median               -0.013           0              0.001
Standard Deviation   0.015983         0.032429       0.014846
Sample Variance      0.000255         0.001052       0.00022
b                    15


                     10                          Rock Gaps
                     5


                     0
    -1    -0.5            0     0.5       1


c
                     20

                     15

                     10

                      5
                                                  Grass
                      0
    -1    -0.5            0     0.5       1
Gravel-scale Measurement




8x8m grid in centre of bar was the area of focus
Controlled Experiment Description
• Scans taken at various known distances, heights,
locations, sequences and amounts on and around the
bar.
• Models were merged and processed in various ways
in RiScan Pro, Polyworks and Surfer.
• Models were then tested against a EDM Theodolite
data-based model (appx 3mm accuracy) including 3200
coordinate points within the 8x8 grid.
• EDM data taken systematically across the 8x8 grid in
order to leave surface undisturbed.
• EDM data catagorised as exposed rock tops and
topographic lows.
Example results – Gravel scale measurement




Scan height = 1.5m
Scan amount = 1             Mismeasurement errors
Scan locations = n/a
                                     All       Highs    Lows
Scan distance = 10m
Processing = none           Min =    0.000001 0.000001 0.00007
Scan resolution = max       Max =    0.121     0.121    0.114
Repeat scans = no
Merging = reflectors only   Mean =   0.0243    0.0146   0.0339
Example results – Gravel scale Measurement




                              Mismeasurement errors
Scan height = 1.9m
Scan amount = 2                        All       Highs     Lows
Scan locations = opposite     Min =    0.00002   0.00002   0.00016
Scan distance = 20m
Processing = default OCTREE   Max =    0.1266    0.1266    0.1124
Scan resolution = max         Mean =   0.0270    0.0205    0.03359
Repeat scans = no
Merging = reflectors only
Arolla Outwash Plain Study - Description

 • To measure geomorphological change on a daily
   basis over a 2-week period.
 • Net Change and change at a local level.
 • 12 scans were taken between 5AM and 11AM at zero-
   low flow after overnight re-freezing of glacier water.
 • AIMS
   • To test the appropriateness of TLS for such a project.
   • To better understand geomorphological change at small
     temporal intervals over a number of spatial scales.
   • To monitor the gravel resource on the plain
       • To better manage extraction for building purposes and
         downstream sedimentation.
Arolla/Ferpecle Glacial Outwash Plain,
Valais, Switzerland.




                                            Arolla




                                         300m x 300m
                                            plain




                                             Ferpecle
Terrestrial lidar point cloud model



Three Modelled
Scans (out of
twelve available)
Small-Scale Morphological change
                     • Sub-bar level change
                     • bank collapse and
                     deposition
Outwash Plain Reach-Scale Morphology
Total sediment budget and model error
                                               Deposition
                                               Erosion
                            180                Peak discharge                                                           0.9


    Sediment volume (m 3)
                            160                                                                                         0.8




                                                                                                                              Discharge (m3s- 1)
                            140                                                                                         0.7
                            120                                                                                         0.6
                            100                                                                                         0.5
                             80                                                                                         0.4
                             60                                                                                         0.3
                             40                                                                                         0.2
                             20                                                                                         0.1
                              0                                                                                         0.0
                                          2nd-3rd     3rd-4th       4th-5th    5th-7th          7th-9th     9th-10th
                                                                     Date (June 04)

                                          30

                                          25

                                          20
                              frequency




                                          15

                                          10

                                          5

                                          0
                                                                                0
                                                                    -0

                                                                          -0
                                               -0.1

                                                      -0.1

                                                             -0.1




                                                                                         0.02

                                                                                                   0.04

                                                                                                          0.06

                                                                                                                 0.08

                                                                                                                        0.1
                                                                                m
Dartford Creek – morphological monitoring
The Dartford Creek - Location




                                Site
The Dartford Creek - Kent
The Dartford Creek - Kent

                                 Sheet Piling


                 Rig and Plant                  The Dartford
                                                Barrier
     Brushwood
                        Barge
The Dartford Creek - Kent
The Dartford Creek - Kent
The Dartford Creek - Kent
The Dartford Creek - Kent
Scope of work
• To describe, assess and understand the
  geomorphological system
• To monitor the site and habitat geomorphology
  during and post construction
Challenges for measurement and understanding
• Complex morphology (a result of tidal, fluvial and geotechnical
  processes)
• Tides
• Operational plant and machinery
• Structurally complex over many scales
• Potential for widespread and subtle change
• Difficult to measure due to ground conditions and available
  perspective
Geomorphological
Assessment
 • Desk Study
 • Walk over survey using
   customised pro-forma
 • Separated the channel
   into process units on
   each bank based on key
   characteristics and
   process evidence
 • Noted features within
   each process unit
   (gullies, shear faces, cut
   banks, failures)
 • Quantify Morphology..?
4) Dartford Creek
Dartford Creek



                 Raw point cloud
                 model
Dartford Creek



                 Raw point cloud
                 model

Survey
subtraction
Dartford Creek   Compound slope-
                 elevation




Survey
subtraction
Dartford Creek   Compound slope-
                 elevation




Survey
subtraction
Dartford Creek – 3D model, planform view




                         Single Scan
Dartford Creek – Model detail
TLS data in GIS         Compound
                        slope/elevation map




         Regionalised
         slope map
First survey near to rig
Dartford Creek – Second Survey
Dartford Creek – Second Survey




               Area of Slumping




Area of moderate erosion
Dartford Creek – DTM subtraction                                                                            Area of erosion




                                                                                             XSection9

                                             5.00



        Area of deposition                   4.00



                                             3.00
                             Elevation (m)




                                             2.00
                                                                                                                                                      Aug06
                                                                                                                                                      Nov-06
                                             1.00



                                             0.00



                                             -1.00



                                             -2.00
                                                     0.00   5.00   10.00   15.00   20.00   25.00      30.00   35.00   40.00   45.00   50.00   54.49
                                                                                             Distance (m)
Digital Terrain Model Subtraction
 Elevation Change        Sediment Budget
Nenthead Unstable Valley
Survey Description - Nenthead
• Scan surveys completed on 07/10/03 and
  16/08/04 (approx 10 months)
• One season of high Discharges
• Concentrated on main unstable slope
  (approximately 80% of sediment source area)
• 1st survey no reflectors – 2nd survey with
  reflectors
• 5 scan positions (only 2 used)
• Surveys linked using common points between
  models in RiScan
Reflector tie points


                                  Used for second
                                  survey modelling




7 reflectors
used
Natural tie points

                     Used for first
                     survey modelling




 Easily
 Identifiable
 points
Slope Model
Slope Movement

                 Erosion and
                 Deposition




                 Upstream
                 stability and
                 vegetation
                 growth:
                 Complicating
                 Factor
Slope Erosion
Immediate Channel Change
Immediate channel deposition
Volumetric change
Slope Change         Volume             Channel Change     Volume
                     (m3)                                  (m3)
Positive Volume      11.63              Positive Volume    29.10
[Deposition]:                           [Deposition]:
Negative Volume      77.57              Negative Volume    33.32
[Erosion]:                              [Erosion]:
Net Volume [Cut-     - 75.94            Net Volume [Cut-   - 4.22
Fill]:                                  Fill]:


•  Approximately 80 m3 of sediment removed from the local system
over a 9 month period.
• One high flow season
• Efficient channel – steep and high energy
Downstream engineering works




R. Nent engineered to stabilize mine spoil through
Village of Nenthead.
Series of pools and blockstone rapids created
Pools act as sediment traps
Engineering works model flood hydraulics

 700


 600


 500


 400
                                                                                               74 cross-
 300


 200
                                                                                               sections
 100


  0
       0   100   200     300    400      500         600       700      800       900   1000

                  Flood shear   Fine sed threshold         Coarse sed threshold


20cumec flood simulated using HEC RAS model
Distinct pool-rapid hydraulic shear stress fluctuation
Sub 2mm material just movable in pools
Coarser material likely to be trapped in pools
Deposition downstream




                 Exceedence percentage
                                               120
                                               100
                                                80
                                                60
                                                40
                                                20
                                                 0
                                         0.1         1              10           100     1000
                                                              Clast size (mm)

                                                         POOL 1     POOL 2      POOL 3



                 Coarse material in pool 1
                 Fining in downstream pools
Deposition downstream
                                        Conventional EDM
                                        survey


                                        Deposition measured in
                                        upstream 3 pools up to 2002




Deposition reduced in upper
pool but continuing in pools 2
and 3 up to 2004
190m3 sediment deposited in
the pools


Roughly matches the 2 x 80m3 removed from
mine slopes
TLS - bridges
Ulley Dam – Emergency monitoring

 • Used to remotely monitor the dam face during a
   failure event (movement above 2mm would be
   detected)
 • Also used to measure water surface area for draw-
   down calculations
Valley Tidal Doors – Asset Measurement
• Used to produce digital document of a historical asset and a wider
  DEM and bare-earth DTM.
Valley tidal Doors
Practical Considerations:
                  Weather and Nature



                                           Curious Animals



Single Scan Truecolour (high resolution)

               Fog
Practical Considerations: Water



Scan direction         Diffuse reflection from valley side




      Water surface
      (mirror-like)
      reflection. NO
      DATA
      RETURN!
Practical Considerations: Water


                        Return to scanner
                                            Diffuse reflection from valley side
Scan direction




                  Water surface
                  (mirror-like)
                  reflection




       3D Model: 3 scans (high resolution)
Practical Considerations: Water



Scan direction




                         Incorrectly located
                         coordinate points




       3D Model: 3 scans (high resolution)
Measuring Water Surface variations
Study Aims and Objectives

                         LMSZ210 – Older Model Scanner
                         360deg horizontal
                         90deg vertical
                         5mm accuracy
                         0.0025deg angular resolution
                         8000-12000 points are acquired/second
                         350m radial range
                         Non destructive
                         Rapid

•This study utilises terrestrial LiDAR data to map water surface
character based on the local standard deviation of the laser returns.

•A revised biotope unit classification is proposed and tested using
similar data from an upland river in the UK.
Study Rivers




River South Tyne




River Skirfare




River Wharfe
Data Collection 1




•Biotope units were visually identified by the survey team and mapped
using theodolite survey
•Retro reflectors mapped using theodolite survey
•Sites scanned using TLS
Data Collection 2




•Automatic retro-reflector recognition and scan registration in RiScan Pro™
•Data captured inside the wetted perimeter of the channel were extracted
manually
•Data exported as ASCII files for input and analysis using the SURFER™
surface mapping software
Data Analysis




•The local standard deviation of the data were computed using a 0.2 m radius
moving window
•Data were gridded at 0.04 m so as to capture the smallest biotope unit seen
at the study sites
•Local standard deviation values at each of the measured biotope locations
were then extracted from the grids using the residual function in SURFER™
•Local standard deviation values interrogated at each known biotope location
•Statistical properties of each biotope determined
Results: Temporal variation




•Temporal data from the River Skirfair at Arncliffe reveal that the median
surface roughness values for the recorded biotopes are generally
consistent between scans.
•Suggests that local surface standard deviation is a robust measure
recording consistent values at the same biotope locations
•The surface expression of each biotope is subject to minimal temporal
variation and should therefore be definable.
Results: Spatial consistency




•Between river roughness values show good consistency particularly
around the median values recorded for each river.
•These data allow physical surface roughness limits to be defined for
each biotope that can then be used to map the biotope distribution along
scanned river reaches.
Results: Spatial consistency
                         •Min stdev                   Max stdev
Pool                      0                            0.005
Accelerating flow         0.012                        0.016
Glide                     0.016                        0.02
Deadwater                 0.018                        0.02
Chute                     0.019                        0.023
Eddy                      0.023                        0.025
Run                       0.023                        0.025
Riffle                    0.025                        0.03
Cascade                   0.035                        0.046
Boil                      0.036                        0.039

Unbroken standing wave    0.046                        0.05
Broken standing wave      0.05                         0.09

•Clear from the data that the local roughness variability
shows considerable overlap between biotope units
suggesting that the present classifications are overly
complex
Results: Spatial consistency




•Units may be usefully amalgamated to    •Five roughness sub-divisions are
form a broader set of flow types.        proposed, amalgamating:
                                        Pools and deadwater zones
                                        Accelerating flow areas
                                        Riffles runs chutes and glides
                                        Rapids cascades
                                        Boils and Waterfalls
Results: Typology validation




                  frequency biotope successfully
Unit descriptor                       classified   frequency amalgamated biotope successfully classified

Run                                        0.00                                                    0.90
Glide                                      0.14                                                    0.75
Chute                                      0.20                                                    0.59
Rapid                                      0.38                                                    1.00
Riffle                                     0.25                                                    0.55
Deadwater                                  0.71                                                    0.71
Pool                                       1.00                                                    1.00
Experiment - Conclusions
Despite issues of signal loss due to absorption and transmission
through the water the reflected signal generates an extremely detailed
and accurate objective map of the water surface roughness which may
be compared to known biotope locations as defined by visual
identification in the field.

Biotope surface roughness delineation has proved problematic using
the current set of biotopes found in the literature due to large within
biotope surface variation. This suggests an overly complex set of
biotope classifications.

The results also suggest that present biotope classifications are overly
complex and could reasonably be reduced to three or four
amalgamated units.
Where next…………?
                          • Sediment size measurement

160
140                                                                                                     a
120                                                             2
                                                            R = 0.9653                                  b
100
                                                                                                        c
 80
                                                                                2                       Linear (a)
                                                                               R = 0.9202
 60
                                                                                                        Linear (c)
 40
 20                                                                 y = 1.0876x - 3.5613                Linear (b)
                                                                         R2 = 0.9711
     0
                      0             10         20          30             40            50



                      1000
 Sediment size (mm)




                                                                                            wolman
                          100
                                                                                            laser all




                          10
                                0        20    40     60            80      100
                                              % excedence
Problems with TLS and Fitness-for-purpose
 • An inappropriate measurement technique
   when:
    • mm or sub-mm accuracy is required on key
      points.
    • Only one distance measurement is needed
    • No appropriate vantage is available
    • The measurement area exceeds a practical
      limit (around 10km2)
    • Water is present (not always a problem)
    • Point interpolation error is accepted
Key considerations

• TLS is not the answer to all measurement problems
• When it is the appropriate it is extremely useful
   • Try to consider different types of TLS

• Cost reduction and “added value” in Arup?
• It can reduce risk and thus benefit H&S
• The technology is improving
• Could one survey provide many different types of
  information? (dimensions, change, hydraulics, habitat, roughness,
 colour, reflectivity, sediment size, vegetation characteristics)
Key Considerations
• An ideal technique when:
   • Good accuracy and point resolution is required
     over medium to large areas
       • (<+/-1cm error over 10m2 up to 10s of km2)
   • There is no access but good vantage (non-contact
     tool)
   • The data are required for multiple purposes
       • Measurement and monitoring, GIS, Virtual
         Reality
   • The scene of measurement is complex and
     includes features such as vegetation, overhangs,
     wells and bridges.
TLS – Warnings and Benefits
• What are the implications / uses of a survey?
• Control?
• State expected data character, nature and utility early.
• Sometimes overboard and can be over sold.
• It can be “the ultimate” data set.
• Allows errors to be tracked and understood.
• Can measure more than just topography.
• Great in Emergencies.
• Its getting better …..
Thank you !!




Questions?

More Related Content

What's hot

Introduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouaultIntroduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouaultNaivedya Mishra
 
APPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMS
APPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMSAPPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMS
APPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMSSaumya Tiwari
 
Aircraft Navigation- INS / GPS
Aircraft Navigation- INS / GPSAircraft Navigation- INS / GPS
Aircraft Navigation- INS / GPSshankar11122
 
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel TypesOn the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel TypesBeniamino Murgante
 
Errors and biases in gps
Errors and biases in gpsErrors and biases in gps
Errors and biases in gpsmaneeb
 
Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930JiyaE
 
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMSRADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMSShivangiSingh241
 
Thermal Remote Sensing
Thermal Remote SensingThermal Remote Sensing
Thermal Remote SensingRohit Kumar
 
Report Radar and Remote Sensing
Report Radar and Remote SensingReport Radar and Remote Sensing
Report Radar and Remote SensingFerro Demetrio
 
Dennon.clardy
Dennon.clardyDennon.clardy
Dennon.clardyNASAPMC
 

What's hot (20)

How gps works
How gps worksHow gps works
How gps works
 
Pratik
PratikPratik
Pratik
 
Introduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouaultIntroduction to sar-marjolaine_rouault
Introduction to sar-marjolaine_rouault
 
Lecture 23 notes
Lecture 23   notesLecture 23   notes
Lecture 23 notes
 
APPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMS
APPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMSAPPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMS
APPLICATION OF SIGNAL PROCESSING IN RADIO ASTRONOMY SYSTEMS
 
Aircraft Navigation- INS / GPS
Aircraft Navigation- INS / GPSAircraft Navigation- INS / GPS
Aircraft Navigation- INS / GPS
 
Als seminar
Als seminarAls seminar
Als seminar
 
Fundamentals aquatic-web
Fundamentals aquatic-webFundamentals aquatic-web
Fundamentals aquatic-web
 
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel TypesOn the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
 
Glavich
GlavichGlavich
Glavich
 
Errors and biases in gps
Errors and biases in gpsErrors and biases in gps
Errors and biases in gps
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930Synthetic aperture radar (sar) 20150930
Synthetic aperture radar (sar) 20150930
 
Sband lunar radar
Sband lunar radarSband lunar radar
Sband lunar radar
 
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMSRADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
 
Thermal Remote Sensing
Thermal Remote SensingThermal Remote Sensing
Thermal Remote Sensing
 
Altm (1)
Altm (1)Altm (1)
Altm (1)
 
GPS-errors-2
GPS-errors-2GPS-errors-2
GPS-errors-2
 
Report Radar and Remote Sensing
Report Radar and Remote SensingReport Radar and Remote Sensing
Report Radar and Remote Sensing
 
Dennon.clardy
Dennon.clardyDennon.clardy
Dennon.clardy
 

Viewers also liked

Suds training bogota_presentation_final
Suds training bogota_presentation_finalSuds training bogota_presentation_final
Suds training bogota_presentation_finalllica
 
2 sucesiones continuación
2 sucesiones continuación2 sucesiones continuación
2 sucesiones continuaciónllica
 
2 limnología
2 limnología2 limnología
2 limnologíallica
 
Suds course bogota_workbook_v4
Suds course bogota_workbook_v4Suds course bogota_workbook_v4
Suds course bogota_workbook_v4llica
 
Contam agua 4 a
Contam agua 4 aContam agua 4 a
Contam agua 4 allica
 
Ecologia y m.a.
Ecologia y m.a.Ecologia y m.a.
Ecologia y m.a.llica
 
Tratamientos terciarios
Tratamientos terciariosTratamientos terciarios
Tratamientos terciariosllica
 
Nuevas tecnologías internacionales para el tratamiento de aguas
Nuevas tecnologías internacionales para el tratamiento de aguasNuevas tecnologías internacionales para el tratamiento de aguas
Nuevas tecnologías internacionales para el tratamiento de aguasllica
 
Ecohidrologia
EcohidrologiaEcohidrologia
Ecohidrologiallica
 
4 medición de la calidad biótica de las aguas
4 medición de la calidad biótica de las aguas4 medición de la calidad biótica de las aguas
4 medición de la calidad biótica de las aguasllica
 
Relación de la geología y las aguas subterráneas
Relación de la geología y las aguas subterráneasRelación de la geología y las aguas subterráneas
Relación de la geología y las aguas subterráneasllica
 
Contam agua 3
Contam agua 3Contam agua 3
Contam agua 3llica
 
La ecología basica en los ecosistemas 2009 1
La ecología basica en los ecosistemas 2009  1La ecología basica en los ecosistemas 2009  1
La ecología basica en los ecosistemas 2009 1llica
 
3 la teoría de disturbio y las perturbaciones
3 la teoría de disturbio y las perturbaciones3 la teoría de disturbio y las perturbaciones
3 la teoría de disturbio y las perturbacionesllica
 
Biodiversidad
BiodiversidadBiodiversidad
Biodiversidadllica
 

Viewers also liked (15)

Suds training bogota_presentation_final
Suds training bogota_presentation_finalSuds training bogota_presentation_final
Suds training bogota_presentation_final
 
2 sucesiones continuación
2 sucesiones continuación2 sucesiones continuación
2 sucesiones continuación
 
2 limnología
2 limnología2 limnología
2 limnología
 
Suds course bogota_workbook_v4
Suds course bogota_workbook_v4Suds course bogota_workbook_v4
Suds course bogota_workbook_v4
 
Contam agua 4 a
Contam agua 4 aContam agua 4 a
Contam agua 4 a
 
Ecologia y m.a.
Ecologia y m.a.Ecologia y m.a.
Ecologia y m.a.
 
Tratamientos terciarios
Tratamientos terciariosTratamientos terciarios
Tratamientos terciarios
 
Nuevas tecnologías internacionales para el tratamiento de aguas
Nuevas tecnologías internacionales para el tratamiento de aguasNuevas tecnologías internacionales para el tratamiento de aguas
Nuevas tecnologías internacionales para el tratamiento de aguas
 
Ecohidrologia
EcohidrologiaEcohidrologia
Ecohidrologia
 
4 medición de la calidad biótica de las aguas
4 medición de la calidad biótica de las aguas4 medición de la calidad biótica de las aguas
4 medición de la calidad biótica de las aguas
 
Relación de la geología y las aguas subterráneas
Relación de la geología y las aguas subterráneasRelación de la geología y las aguas subterráneas
Relación de la geología y las aguas subterráneas
 
Contam agua 3
Contam agua 3Contam agua 3
Contam agua 3
 
La ecología basica en los ecosistemas 2009 1
La ecología basica en los ecosistemas 2009  1La ecología basica en los ecosistemas 2009  1
La ecología basica en los ecosistemas 2009 1
 
3 la teoría de disturbio y las perturbaciones
3 la teoría de disturbio y las perturbaciones3 la teoría de disturbio y las perturbaciones
3 la teoría de disturbio y las perturbaciones
 
Biodiversidad
BiodiversidadBiodiversidad
Biodiversidad
 

Similar to Workshop bogota tls

Similar to Workshop bogota tls (20)

Iirs rstechnologypdf
Iirs rstechnologypdfIirs rstechnologypdf
Iirs rstechnologypdf
 
Lidar
LidarLidar
Lidar
 
LIDAR- Modern techniques in Surveying.pptx
LIDAR- Modern techniques in Surveying.pptxLIDAR- Modern techniques in Surveying.pptx
LIDAR- Modern techniques in Surveying.pptx
 
Lidar and radar.pptx
Lidar and radar.pptxLidar and radar.pptx
Lidar and radar.pptx
 
Lidar- light detection and ranging
Lidar- light detection and rangingLidar- light detection and ranging
Lidar- light detection and ranging
 
RS - Presentation by AP2023.pptx
RS - Presentation by AP2023.pptxRS - Presentation by AP2023.pptx
RS - Presentation by AP2023.pptx
 
Platforms of Remote sensing and GIS
Platforms of Remote sensing and GISPlatforms of Remote sensing and GIS
Platforms of Remote sensing and GIS
 
Introduction to TLS Applications Presentation
Introduction to TLS Applications PresentationIntroduction to TLS Applications Presentation
Introduction to TLS Applications Presentation
 
Gis
GisGis
Gis
 
Eastern WV LiDAR Acquisition
Eastern WV LiDAR Acquisition Eastern WV LiDAR Acquisition
Eastern WV LiDAR Acquisition
 
LIDAR
LIDARLIDAR
LIDAR
 
Lidar
LidarLidar
Lidar
 
An Introduction to Laser Scanning - Part 1: How does it all work?
An Introduction to Laser Scanning - Part 1: How does it all work?An Introduction to Laser Scanning - Part 1: How does it all work?
An Introduction to Laser Scanning - Part 1: How does it all work?
 
Rahul seminar2 2_for_slideshare.pptx
Rahul seminar2 2_for_slideshare.pptxRahul seminar2 2_for_slideshare.pptx
Rahul seminar2 2_for_slideshare.pptx
 
Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]
 
LIDAR
LIDARLIDAR
LIDAR
 
Lidarpptbysharath copy-140316044543-phpapp01
Lidarpptbysharath copy-140316044543-phpapp01Lidarpptbysharath copy-140316044543-phpapp01
Lidarpptbysharath copy-140316044543-phpapp01
 
Radar
RadarRadar
Radar
 
Phd final slides
Phd final slidesPhd final slides
Phd final slides
 
LIDAR
LIDARLIDAR
LIDAR
 

More from llica

Contam agua 2
Contam agua 2Contam agua 2
Contam agua 2llica
 
Contaminacion agua 1
Contaminacion agua 1Contaminacion agua 1
Contaminacion agua 1llica
 
Problemática del agua en bogotá
Problemática del agua en bogotáProblemática del agua en bogotá
Problemática del agua en bogotállica
 
Biología de la conservación
Biología de la conservaciónBiología de la conservación
Biología de la conservaciónllica
 
Estudio de caso
Estudio de casoEstudio de caso
Estudio de casollica
 
Estudio de caso1 corredor
Estudio de caso1 corredorEstudio de caso1 corredor
Estudio de caso1 corredorllica
 
Estrategias de conservación
Estrategias de conservaciónEstrategias de conservación
Estrategias de conservaciónllica
 
Limnología
LimnologíaLimnología
Limnologíallica
 
1 fundamentos de ecología
1 fundamentos de ecología1 fundamentos de ecología
1 fundamentos de ecologíallica
 
Investigación integral de ecosistemas
Investigación integral de ecosistemasInvestigación integral de ecosistemas
Investigación integral de ecosistemasllica
 
Situación actual del ordenamiento territorial
Situación actual del ordenamiento territorialSituación actual del ordenamiento territorial
Situación actual del ordenamiento territorialllica
 
Marco teorico de diseño ciudades
Marco teorico de diseño ciudadesMarco teorico de diseño ciudades
Marco teorico de diseño ciudadesllica
 
Profundización en el manejo integral de cuencas hidrográficas(9 abril)
Profundización en el manejo integral de cuencas hidrográficas(9 abril)Profundización en el manejo integral de cuencas hidrográficas(9 abril)
Profundización en el manejo integral de cuencas hidrográficas(9 abril)llica
 
Nuevas tendencias en el manejo integrado del recurso hídrico. básicos
Nuevas tendencias en el manejo integrado del recurso hídrico. básicosNuevas tendencias en el manejo integrado del recurso hídrico. básicos
Nuevas tendencias en el manejo integrado del recurso hídrico. básicosllica
 
Resumen
ResumenResumen
Resumenllica
 

More from llica (15)

Contam agua 2
Contam agua 2Contam agua 2
Contam agua 2
 
Contaminacion agua 1
Contaminacion agua 1Contaminacion agua 1
Contaminacion agua 1
 
Problemática del agua en bogotá
Problemática del agua en bogotáProblemática del agua en bogotá
Problemática del agua en bogotá
 
Biología de la conservación
Biología de la conservaciónBiología de la conservación
Biología de la conservación
 
Estudio de caso
Estudio de casoEstudio de caso
Estudio de caso
 
Estudio de caso1 corredor
Estudio de caso1 corredorEstudio de caso1 corredor
Estudio de caso1 corredor
 
Estrategias de conservación
Estrategias de conservaciónEstrategias de conservación
Estrategias de conservación
 
Limnología
LimnologíaLimnología
Limnología
 
1 fundamentos de ecología
1 fundamentos de ecología1 fundamentos de ecología
1 fundamentos de ecología
 
Investigación integral de ecosistemas
Investigación integral de ecosistemasInvestigación integral de ecosistemas
Investigación integral de ecosistemas
 
Situación actual del ordenamiento territorial
Situación actual del ordenamiento territorialSituación actual del ordenamiento territorial
Situación actual del ordenamiento territorial
 
Marco teorico de diseño ciudades
Marco teorico de diseño ciudadesMarco teorico de diseño ciudades
Marco teorico de diseño ciudades
 
Profundización en el manejo integral de cuencas hidrográficas(9 abril)
Profundización en el manejo integral de cuencas hidrográficas(9 abril)Profundización en el manejo integral de cuencas hidrográficas(9 abril)
Profundización en el manejo integral de cuencas hidrográficas(9 abril)
 
Nuevas tendencias en el manejo integrado del recurso hídrico. básicos
Nuevas tendencias en el manejo integrado del recurso hídrico. básicosNuevas tendencias en el manejo integrado del recurso hídrico. básicos
Nuevas tendencias en el manejo integrado del recurso hídrico. básicos
 
Resumen
ResumenResumen
Resumen
 

Workshop bogota tls

  • 1. Terrestrial Laser Scanning in River Environments Dr David Hetherington Ove Arup and Partners, Newcastle upon Tyne, UK. Tuesday the 1st June 2010 Universidad Javeriana, Bogota, Colombia Laser Scanner Laser Scanner Photograph – River Wharfe Laser Scan Model – River Wharfe
  • 2. Presentation Structure • Spatial Data Theory • Terrestrial Laser Scanning principles and operation • Reflectivity, Time-of-flight measurement, Scanner operation • Potential uses and example projects • Example projects, Potential applications, where next? • Benefits and Limitations • Fit-for-purpose? • Questions
  • 3. What is good quality spatial data?...
  • 4. Processing spatial data into elevation models • Manual filtering – to remove anomalies • Ground filtering – to remove lowest or highest points • Regularisation / gridding – to allow for surfacing • Averaging – between surveys • Lumping – all data together • Extrapolation – estimating beyond surveys • Interpolation – predicting lines and data between points • ALL OF THESE IMPACT ON DATA QUALITY
  • 5. Interpolation – various methods (From Keckler 2001)
  • 6. Survey Methods: Thedolite/GPS Aerial Photo 2 people x 3 days = 4000 data points
  • 7. Survey inaccuracy: Form Interpolation
  • 8. Survey method and interpolation error Potential volumetric estimation error for various survey techniques, and interpolation methods in a river system (from Milan et al, 2007)
  • 9. Example complex (yet high quality) input spatial data – Terrestrial lidar
  • 10. Terrestrial Laser Scanning (TLS) - types • Various types exist • Ultra-short range (hand held static) used in manufacturing, medicine, archaeology • Short range (mobile static) used in heritage, archaeology, small buildings • Medium range (mobile static) used in buildings, street scenes, infrastructure. • Long Range (mobile static) used for large buildings, townscapes, topographical surveys, mining, forestry. • Vehicle Based (mobile dynamic) automated survey and data registration. Used to easily map towns, long roads, motorways etc. • All have their relative benefits and weaknesses. • Choosing the correct method is key
  • 11. Measurement using Laser Scanning – Basic Principles • Lidar: • “Light Detection And Ranging” using a pulsed laser beam. • Numerous automated measurements = Scanning • 3 platforms for lidar scanning • Satellites (extremely long range) • Airborne (long to moderate range) • Terrestrial (very short to moderate range) • All based on time-of-flight principles of laser pulses • All are reflectorless and non-contact. • Measurements are based on reflections from physical surfaces
  • 12. Laser measurement theory - REFLECTIVITY • 3 types of light reflection: Diffuse Mirror-like Retro (most surfaces) (Glass, mirrors flat (roadsigns, bike water surfaces) reflectors, strips on high-vis jackets)
  • 13. Time-of-flight measurement • A laser pulse generator sends out infrared light pulses. • Reflected echo signals generate a receiver signal. • Time interval counted by a quartz-stabilised clock frequency. • The calculated range value is then processed and saved.
  • 14. A simplified lidar scanner 1. Range finder electronics 2. Laser beam 3. Rotating mirror 4. Rotating optical head 5. Connection to Laptop 6. Laptop 7. Software
  • 15. Terrestrial laser scan data • Range of up to 1500m (for highly reflective surfaces) • Sub-cm accuracy • A single scan can contain over 7-million data points • A single model is made of multiple scans from various locations to avoid data shadow • Each coordinate point is associated with colour (as measured by an integrated camera) and intensity (reflectivity) information. • Data and scans are automatically georeferenced using an integrated GPS system. • Can be easily linked to thermal imagery cameras.
  • 16. Riegl LMSZ420 laser scanner • Arup own this model of medium-long range scanner. • Time of Flight-based scanner • Range of around 1km • Point accuracy of around 10mm (can be reduced to around 5mm with repeat scanning) • Allowing for very high resolution point clouds. • Integrated camera captures colour data • Captures intensity of return data and attached to each coordinate (along with colour).
  • 18. Spatial & Temporal Change 1000km Rates River scale slope adjustment Reach scale Increasing Spatial Scale slope adjustment 1km Planform change Barform change 1m Cross-section adjustment Fine sediment movement 1mm 1 day 1 month 1 year 1000 years 10000 years Increasing Time Scale
  • 19. Spatial & Temporal Survey 1000km Limits Aerial Photo's Airborne Increasing Spatial Scale LIDAR GPS 1km Theodolite 1m Photogrametry 1mm 1 day 1 month 1 year 1000 years 10000 years Increasing Time Scale
  • 20. Spatial & Temporal Survey 1000km Limits Aerial Photo's Airborne Increasing Spatial Scale LIDAR GPS 1km Theodolite 1m Photogrametry NO DATA 1mm 1 day 1 month 1 year 1000 years 10000 years Increasing Time Scale
  • 21. 1000km Lidar limits Aerial Photo's Airborne Increasing Spatial Scale LIDAR GPS 1km Theodolite 1m Terrestrial LIDAR Photogrametry NO DATA 1mm 1 day 1 month 1 year 1000 years 10000 years Increasing Time Scale
  • 22. Multiple scans and overlap Multiple scans from various perspectives reduce “shadow”
  • 23. Point Cloud Model Creation (merging scans) • All individual scan need to be registered into one common coordinate system. • Various ways to do this.. • Quickest and most reliable way is via “pattern matching” / “surface matching”. • I-Site software is a good option. • Allows for surfaces to be created, cross sections to be cut, volumes calculated, change/deformation to be observed. • Output possible in numebrous formats including CAD.
  • 24. Example laser scan model – River Wharfe • 25 High-Resolution Scans • Scans Merged to within <5mm • 21 million Data points • 1 point per cm2
  • 25. Error Measurement On The Wharfe x y z Mean -0.0176 0.00011 0.001078 Standard Error 0.002014 0.004054 0.001856 Median -0.013 0 0.001 Standard Deviation 0.015983 0.032429 0.014846 Sample Variance 0.000255 0.001052 0.00022 b 15 10 Rock Gaps 5 0 -1 -0.5 0 0.5 1 c 20 15 10 5 Grass 0 -1 -0.5 0 0.5 1
  • 26. Gravel-scale Measurement 8x8m grid in centre of bar was the area of focus
  • 27. Controlled Experiment Description • Scans taken at various known distances, heights, locations, sequences and amounts on and around the bar. • Models were merged and processed in various ways in RiScan Pro, Polyworks and Surfer. • Models were then tested against a EDM Theodolite data-based model (appx 3mm accuracy) including 3200 coordinate points within the 8x8 grid. • EDM data taken systematically across the 8x8 grid in order to leave surface undisturbed. • EDM data catagorised as exposed rock tops and topographic lows.
  • 28. Example results – Gravel scale measurement Scan height = 1.5m Scan amount = 1 Mismeasurement errors Scan locations = n/a All Highs Lows Scan distance = 10m Processing = none Min = 0.000001 0.000001 0.00007 Scan resolution = max Max = 0.121 0.121 0.114 Repeat scans = no Merging = reflectors only Mean = 0.0243 0.0146 0.0339
  • 29. Example results – Gravel scale Measurement Mismeasurement errors Scan height = 1.9m Scan amount = 2 All Highs Lows Scan locations = opposite Min = 0.00002 0.00002 0.00016 Scan distance = 20m Processing = default OCTREE Max = 0.1266 0.1266 0.1124 Scan resolution = max Mean = 0.0270 0.0205 0.03359 Repeat scans = no Merging = reflectors only
  • 30. Arolla Outwash Plain Study - Description • To measure geomorphological change on a daily basis over a 2-week period. • Net Change and change at a local level. • 12 scans were taken between 5AM and 11AM at zero- low flow after overnight re-freezing of glacier water. • AIMS • To test the appropriateness of TLS for such a project. • To better understand geomorphological change at small temporal intervals over a number of spatial scales. • To monitor the gravel resource on the plain • To better manage extraction for building purposes and downstream sedimentation.
  • 31. Arolla/Ferpecle Glacial Outwash Plain, Valais, Switzerland. Arolla 300m x 300m plain Ferpecle
  • 32. Terrestrial lidar point cloud model Three Modelled Scans (out of twelve available)
  • 33. Small-Scale Morphological change • Sub-bar level change • bank collapse and deposition
  • 35. Total sediment budget and model error Deposition Erosion 180 Peak discharge 0.9 Sediment volume (m 3) 160 0.8 Discharge (m3s- 1) 140 0.7 120 0.6 100 0.5 80 0.4 60 0.3 40 0.2 20 0.1 0 0.0 2nd-3rd 3rd-4th 4th-5th 5th-7th 7th-9th 9th-10th Date (June 04) 30 25 20 frequency 15 10 5 0 0 -0 -0 -0.1 -0.1 -0.1 0.02 0.04 0.06 0.08 0.1 m
  • 36. Dartford Creek – morphological monitoring
  • 37. The Dartford Creek - Location Site
  • 39. The Dartford Creek - Kent Sheet Piling Rig and Plant The Dartford Barrier Brushwood Barge
  • 44. Scope of work • To describe, assess and understand the geomorphological system • To monitor the site and habitat geomorphology during and post construction Challenges for measurement and understanding • Complex morphology (a result of tidal, fluvial and geotechnical processes) • Tides • Operational plant and machinery • Structurally complex over many scales • Potential for widespread and subtle change • Difficult to measure due to ground conditions and available perspective
  • 45. Geomorphological Assessment • Desk Study • Walk over survey using customised pro-forma • Separated the channel into process units on each bank based on key characteristics and process evidence • Noted features within each process unit (gullies, shear faces, cut banks, failures) • Quantify Morphology..?
  • 47. Dartford Creek Raw point cloud model
  • 48. Dartford Creek Raw point cloud model Survey subtraction
  • 49. Dartford Creek Compound slope- elevation Survey subtraction
  • 50. Dartford Creek Compound slope- elevation Survey subtraction
  • 51. Dartford Creek – 3D model, planform view Single Scan
  • 52. Dartford Creek – Model detail
  • 53. TLS data in GIS Compound slope/elevation map Regionalised slope map
  • 55. Dartford Creek – Second Survey
  • 56. Dartford Creek – Second Survey Area of Slumping Area of moderate erosion
  • 57. Dartford Creek – DTM subtraction Area of erosion XSection9 5.00 Area of deposition 4.00 3.00 Elevation (m) 2.00 Aug06 Nov-06 1.00 0.00 -1.00 -2.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 54.49 Distance (m)
  • 58. Digital Terrain Model Subtraction Elevation Change Sediment Budget
  • 60. Survey Description - Nenthead • Scan surveys completed on 07/10/03 and 16/08/04 (approx 10 months) • One season of high Discharges • Concentrated on main unstable slope (approximately 80% of sediment source area) • 1st survey no reflectors – 2nd survey with reflectors • 5 scan positions (only 2 used) • Surveys linked using common points between models in RiScan
  • 61. Reflector tie points Used for second survey modelling 7 reflectors used
  • 62. Natural tie points Used for first survey modelling Easily Identifiable points
  • 64. Slope Movement Erosion and Deposition Upstream stability and vegetation growth: Complicating Factor
  • 68. Volumetric change Slope Change Volume Channel Change Volume (m3) (m3) Positive Volume 11.63 Positive Volume 29.10 [Deposition]: [Deposition]: Negative Volume 77.57 Negative Volume 33.32 [Erosion]: [Erosion]: Net Volume [Cut- - 75.94 Net Volume [Cut- - 4.22 Fill]: Fill]: • Approximately 80 m3 of sediment removed from the local system over a 9 month period. • One high flow season • Efficient channel – steep and high energy
  • 69. Downstream engineering works R. Nent engineered to stabilize mine spoil through Village of Nenthead. Series of pools and blockstone rapids created Pools act as sediment traps
  • 70. Engineering works model flood hydraulics 700 600 500 400 74 cross- 300 200 sections 100 0 0 100 200 300 400 500 600 700 800 900 1000 Flood shear Fine sed threshold Coarse sed threshold 20cumec flood simulated using HEC RAS model Distinct pool-rapid hydraulic shear stress fluctuation Sub 2mm material just movable in pools Coarser material likely to be trapped in pools
  • 71. Deposition downstream Exceedence percentage 120 100 80 60 40 20 0 0.1 1 10 100 1000 Clast size (mm) POOL 1 POOL 2 POOL 3 Coarse material in pool 1 Fining in downstream pools
  • 72. Deposition downstream Conventional EDM survey Deposition measured in upstream 3 pools up to 2002 Deposition reduced in upper pool but continuing in pools 2 and 3 up to 2004 190m3 sediment deposited in the pools Roughly matches the 2 x 80m3 removed from mine slopes
  • 74. Ulley Dam – Emergency monitoring • Used to remotely monitor the dam face during a failure event (movement above 2mm would be detected) • Also used to measure water surface area for draw- down calculations
  • 75. Valley Tidal Doors – Asset Measurement • Used to produce digital document of a historical asset and a wider DEM and bare-earth DTM.
  • 77. Practical Considerations: Weather and Nature Curious Animals Single Scan Truecolour (high resolution) Fog
  • 78. Practical Considerations: Water Scan direction Diffuse reflection from valley side Water surface (mirror-like) reflection. NO DATA RETURN!
  • 79. Practical Considerations: Water Return to scanner Diffuse reflection from valley side Scan direction Water surface (mirror-like) reflection 3D Model: 3 scans (high resolution)
  • 80. Practical Considerations: Water Scan direction Incorrectly located coordinate points 3D Model: 3 scans (high resolution)
  • 81. Measuring Water Surface variations Study Aims and Objectives LMSZ210 – Older Model Scanner 360deg horizontal 90deg vertical 5mm accuracy 0.0025deg angular resolution 8000-12000 points are acquired/second 350m radial range Non destructive Rapid •This study utilises terrestrial LiDAR data to map water surface character based on the local standard deviation of the laser returns. •A revised biotope unit classification is proposed and tested using similar data from an upland river in the UK.
  • 82. Study Rivers River South Tyne River Skirfare River Wharfe
  • 83. Data Collection 1 •Biotope units were visually identified by the survey team and mapped using theodolite survey •Retro reflectors mapped using theodolite survey •Sites scanned using TLS
  • 84. Data Collection 2 •Automatic retro-reflector recognition and scan registration in RiScan Pro™ •Data captured inside the wetted perimeter of the channel were extracted manually •Data exported as ASCII files for input and analysis using the SURFER™ surface mapping software
  • 85. Data Analysis •The local standard deviation of the data were computed using a 0.2 m radius moving window •Data were gridded at 0.04 m so as to capture the smallest biotope unit seen at the study sites •Local standard deviation values at each of the measured biotope locations were then extracted from the grids using the residual function in SURFER™ •Local standard deviation values interrogated at each known biotope location •Statistical properties of each biotope determined
  • 86. Results: Temporal variation •Temporal data from the River Skirfair at Arncliffe reveal that the median surface roughness values for the recorded biotopes are generally consistent between scans. •Suggests that local surface standard deviation is a robust measure recording consistent values at the same biotope locations •The surface expression of each biotope is subject to minimal temporal variation and should therefore be definable.
  • 87. Results: Spatial consistency •Between river roughness values show good consistency particularly around the median values recorded for each river. •These data allow physical surface roughness limits to be defined for each biotope that can then be used to map the biotope distribution along scanned river reaches.
  • 88. Results: Spatial consistency •Min stdev Max stdev Pool 0 0.005 Accelerating flow 0.012 0.016 Glide 0.016 0.02 Deadwater 0.018 0.02 Chute 0.019 0.023 Eddy 0.023 0.025 Run 0.023 0.025 Riffle 0.025 0.03 Cascade 0.035 0.046 Boil 0.036 0.039 Unbroken standing wave 0.046 0.05 Broken standing wave 0.05 0.09 •Clear from the data that the local roughness variability shows considerable overlap between biotope units suggesting that the present classifications are overly complex
  • 89. Results: Spatial consistency •Units may be usefully amalgamated to •Five roughness sub-divisions are form a broader set of flow types. proposed, amalgamating: Pools and deadwater zones Accelerating flow areas Riffles runs chutes and glides Rapids cascades Boils and Waterfalls
  • 90. Results: Typology validation frequency biotope successfully Unit descriptor classified frequency amalgamated biotope successfully classified Run 0.00 0.90 Glide 0.14 0.75 Chute 0.20 0.59 Rapid 0.38 1.00 Riffle 0.25 0.55 Deadwater 0.71 0.71 Pool 1.00 1.00
  • 91. Experiment - Conclusions Despite issues of signal loss due to absorption and transmission through the water the reflected signal generates an extremely detailed and accurate objective map of the water surface roughness which may be compared to known biotope locations as defined by visual identification in the field. Biotope surface roughness delineation has proved problematic using the current set of biotopes found in the literature due to large within biotope surface variation. This suggests an overly complex set of biotope classifications. The results also suggest that present biotope classifications are overly complex and could reasonably be reduced to three or four amalgamated units.
  • 92. Where next…………? • Sediment size measurement 160 140 a 120 2 R = 0.9653 b 100 c 80 2 Linear (a) R = 0.9202 60 Linear (c) 40 20 y = 1.0876x - 3.5613 Linear (b) R2 = 0.9711 0 0 10 20 30 40 50 1000 Sediment size (mm) wolman 100 laser all 10 0 20 40 60 80 100 % excedence
  • 93. Problems with TLS and Fitness-for-purpose • An inappropriate measurement technique when: • mm or sub-mm accuracy is required on key points. • Only one distance measurement is needed • No appropriate vantage is available • The measurement area exceeds a practical limit (around 10km2) • Water is present (not always a problem) • Point interpolation error is accepted
  • 94. Key considerations • TLS is not the answer to all measurement problems • When it is the appropriate it is extremely useful • Try to consider different types of TLS • Cost reduction and “added value” in Arup? • It can reduce risk and thus benefit H&S • The technology is improving • Could one survey provide many different types of information? (dimensions, change, hydraulics, habitat, roughness, colour, reflectivity, sediment size, vegetation characteristics)
  • 95. Key Considerations • An ideal technique when: • Good accuracy and point resolution is required over medium to large areas • (<+/-1cm error over 10m2 up to 10s of km2) • There is no access but good vantage (non-contact tool) • The data are required for multiple purposes • Measurement and monitoring, GIS, Virtual Reality • The scene of measurement is complex and includes features such as vegetation, overhangs, wells and bridges.
  • 96. TLS – Warnings and Benefits • What are the implications / uses of a survey? • Control? • State expected data character, nature and utility early. • Sometimes overboard and can be over sold. • It can be “the ultimate” data set. • Allows errors to be tracked and understood. • Can measure more than just topography. • Great in Emergencies. • Its getting better …..